Работа 5.15

Определение энергии α -частиц по пробегу в воздухе

Оборудование: препарат α -радиоактивного изотопа, торцовый счетчик α -частиц, счетчик импульсов.

Введение

 $^{\alpha}$ -частицы представляют собой дважды ионизированные атомы гелия $_2^4$ He, т. е. состоят из двух протонов и двух нейтронов. Образуются они при радиоактивном распаде атомных ядер или в процессе различных ядерных реакций. $^{\alpha}$ -частицы с относительно малой энергией можно также получить путем ионизации атомов гелия.

Радиоактивный распад с образованием α -частиц протекает по следующей схеме:

$$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He$$
,

где буквой X обозначен химический символ распадающегося материнского ядра, а буквой Y — химический символ образующегося дочернего ядра. Из схемы распада видно, что атомный номер дочернего ядра на две единицы, а массовое число на четыре единицы меньше материнского.

Скорости, с которыми α -частицы вылетают из распадающегося ядра, очень большие и достигают значений $\approx 10^7$ м/с. Соответственно, кинетическая энергия α -частиц, образующихся при распаде всех тяжелых ядер, заключена в пределах (4 — 9) МэВ. Если α -частица пролетает через вещество, она тратит свою энергию на ионизацию молекул вещества и в конце концов останавливается. Длина пробега α -частицы зависит от плотности вещества. В твердом веществе пробег имеет величину около 10^{-3} см. Например, α -частицы полностью задерживаются обычным листом бумаги. В воздухе при нормальном давлении пробег составляет несколько сантиметров. При уменьшении давления длина пробега увеличивается. На создание одной пары ионов в воздухе тратится в среднем 35 эВ энергии, поэтому α -частица, обладающая энергией в несколько миллионов электронвольт, способна создавать до 10^5 пар ионов.

Характерной особенностью движения α -частиц в воздухе является его прямолинейность и одинаковая длина пробега для всех частиц с одинаковой энергией. Эти обстоятельства дают возможность определить энергию α -частиц по длине их пробега в воздухе. α -частицы, которые излучаются различными ядрами, имеют разную энергию, а поэтому и разные пробеги в веществе.

Энергия $^{\alpha}$ -частиц, излучающихся ядрами определенного радиоактивного элемента, приблизительно одинаковая. Это дает основание считать, что и пробеги этих частиц должны быть одинаковыми. Но, как показывают исследования, наблюдается разброс (страглинг) пробегов для частиц с одинаковой энергией. На рис. 5.38 (кривая a), приведена зависимость числа N^{α} -частиц, прошедших слой вещества, от толщины этого слоя x. Очевидно, что несмотря на потерю энергии при прохождении через вещество, число $^{\alpha}$ -частиц почти на всем пути их пробега остается постоянным. В конце пробега число $^{\alpha}$ -частиц падает до нуля, но спад происходит не резко, а постепенно, что свидетельствует о наличии разброса в длине пробега.

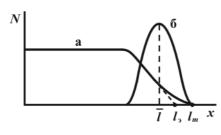


Рис. 5.38

Расстояние \bar{l} , на котором интенсивность пучка α -частиц уменьшается в два раза, называется *средним пробегом*. Если графически продифференцировать кривую a (рис. 5.38), то получится кривая δ , которая представляет собой распределение α -частиц по пробегам. Эта кривая имеет резкий максимум при α - \bar{l} , т. е. преобладающее количество α -частиц имеет

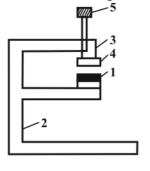
определенный пробег \bar{l} с некоторым разбросом в ту и другую сторону. Кроме среднего пробега α -частиц, используется понятие экстраполированного пробега l_3 . Экстраполированный пробег получается путем продолжения до пересечения с осью α прямолинейного участка кривой α (α), который круто спадает.

Максимальный пробег l_m получается в точке пересечения кривой N = f(x) с осью x. Разброс в величине пробега отдельных α -частиц вызван случайными флуктуациями числа атомов, с которыми эта частица сталкивается на своем пути, так как число ионов, которое образует α -частица, а это значит и потеря ее энергии, зависят от этого числа. Другой причиной, которая вызывает разброс в величине пробега, является изменение заряда α -частицы при ее движении в веществе. На отдельных участках пробега α -частица может присоединить к себе один или два электрона и двигаться как однозарядный ион или нейтральная частица. Это приводит к изменению ее ионизирующей способности, а следовательно и длины пробега.

Длина пробега α -частиц зависит от их скорости. Приближенно эта зависимость может быть выражена формулой Гейгера:

$$l = \alpha v^3$$
,

где l — длина пробега; v — скорость α -частицы; α — постоянная, равная $9.7\cdot 10^{-24}~{\rm c}^3/{\rm m}^2$.


Если в результате исследований определить длину пробега l и скорость α - частиц $\mathfrak v$, то можно найти их кинетическую энергию:

$$E = \frac{mv^2}{2}.$$

Описание установки. Схема экспериментальной установки приведена на рис. 5.39. Источник α -частиц I находится на неподвижной основе 2, в верхней части которой с помощью каретки 3 укреплен счетчик α -частиц α . Каретка α соединена с винтом α вращением которого счетчик α можно приближать или удалять относительно источника α -частиц. Питание счетчика осуществляется от выпрямителя. Импульсы от счетчика регистрируются одноканальным счетным прибором α ПС-02-08.

Порядок выполнения работы

- 1. Вращением головки винта 5 удалите счетчик от источника α -частиц на расстояние (6 7) см.
 - 2. Определите натуральный фон счетчика N_{ϕ} .
- 3. Приблизив счетчик к источнику α -частиц на наименьшее расстояние l_0 = 1 мм, зафиксируйте число импульсов N_0 .

- 4. Последовательно увеличивая расстояние x между счетчиком и источником α -частиц на 1 мм, исследуйте зависимость N_x от x. Измерения производите до того времени, пока число импульсов не станет равным фону. Время отсчета должно быть не менее двух минут.
- 5. Постройте график зависимости N = f(x) и определите экстраполированный пробег $l_{_{\! 2}}$, где N = $N_{_{\! 2}}$ $N_{_{\! 4}}$.

Рис. 5.39 6. По найденным значениям $l_{\rm s}$ с учетом $l_{\rm 0}$ (l = $l_{\rm s}$ + $l_{\rm 0}$ + $l_{\rm c}$) и поглощения α -частиц слюдяным окошком счетчика определите скорость α и кинетическую энергию E α -частиц. Толщину слюдяного окошка счетчика примите равной 3 мг/см².

7. Результаты запишите в таблицу:

_									
	№ п/п	N_{Φ}	$x_{, MM}$	$N_{_{x}}$	N	$l_{_{9}, \text{ MM}}$	l , mm	υ , _M /c	E , Мэ B

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что представляет собой α -частица? Назовите основные ее свойства.
- 2. Напишите схему α -распада.
- 3. Объясните основные закономерности α -распада.
- 4. Что называется пробегом α -частиц?

- 5. Как определяется экстраполированный пробег α -частиц?
- 6. Как по графику определить минимальную длину пробега α -частиц?
- 7. Каковы причины нестабильности некоторых ядер относительно α - распада?
 - 8. Почему α -частицы обладают спектром энергии?
- 9. Объясните зависимость ионизирующей способности α -частицы от ее перезарядки.
 - 10. Назовите границы значений кинетической энергии α -частиц.